
Engineering solutions between structural and non-structural works for flood risk mitigation as adaptation measures to climate change

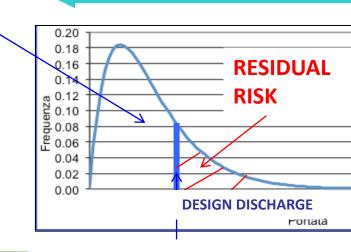
M.Mancini¹, G. Ravazzani¹, A. Ceppi¹ E. Gambini¹, G.Lombardi², S. Meucci², Borgotti³, G. Galli ³

- 1 Dica Politecnico di Milano Piazza L. da Vinci 32 20133 Milano (marco.mancini@polimi.it).
- 2 Monitoring and Modelling Hydrology (MMI. Srl) Via Ariberto 1 20123 Milano (s.meucci@mmidro,it)
- 3 Municipality of Bovisio Masciago.

Flood risk management: a well known trade off between costs of

hydraulic structures and damages reductions

Not to keep the water away from the people.....but the people away from the water (Nemec, 1986)

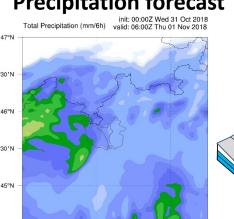


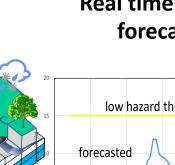
iviliano, July 201

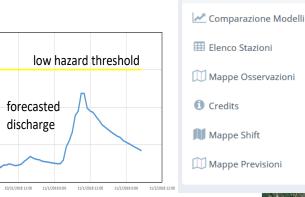
...increasing system resiliance (UN, SENDAY 2015 DEFINITIONs)

XXI Century: MANAGEMENT RESIDUAL RISK with warning system
NON STRUCTURAL MEASURES

/IN [Risk = E(damages) = H_i*E*V]



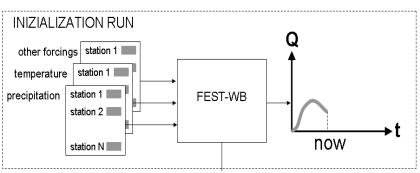

BOLZANO 2-4 OCTOBER 2023

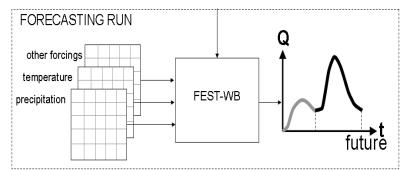


Hydrological model



Real time Flood forecast


Dashboard



SOL FloWS Dashboard

Warning System for Flood Risk Mitigation of the Milano Area (SOL-FloWS)

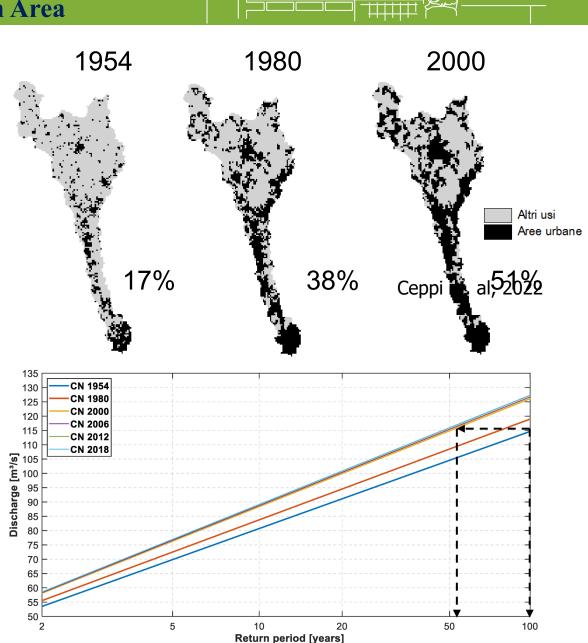
EUROGEO WORKSHOP 2023Major Floods and Minor flood events in Milan urban Area

The Olona flood (Varese): 30 milion €

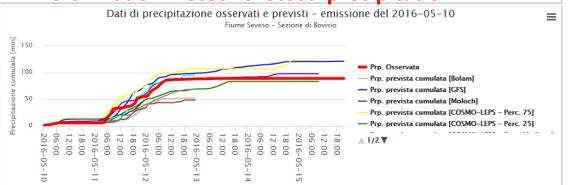
The Seveso flood (Milan): 80 milion €

• The Seveso flood (Milan): 55 milion €

• The Lambro flood (Monza): 6 milion €



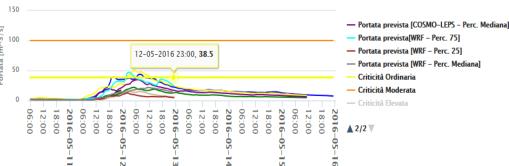
Olona flood (Canegrate)


Seveso flood (Milan)

BOLZANO 2-4 OCTOBER 2023


Multi-model meteo forecast: precipitation

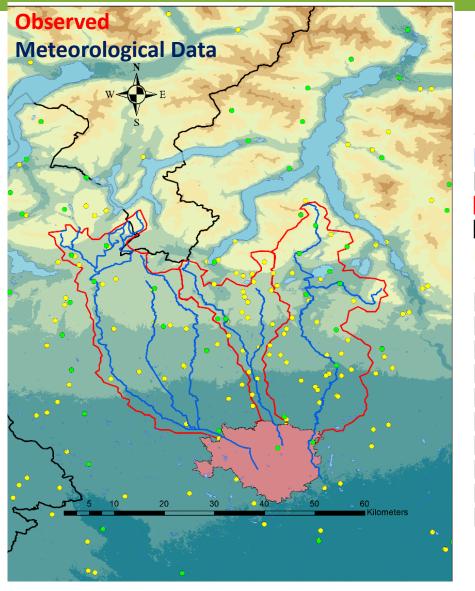
SOL FloWS: Seveso Olona Lambro Food Warning System Real time Flood Hydrograph Forecast and Observation


The North Milan basin 1400 km²

https://www.sol.polimi.it/

Hydrograph forecasts & discharge thresholds

River section real time level /discharge monitoring



data e ora

Legend

- ARPA Lombardia Weather Stations
- Meteonetwork Weather Stations

Main Rivers

Lakes

Milano City

SOL River Basins

SOL River Basins

Borders Citizen-science

DEM association data

<value> meteonetwork

0-100

Institutional data

100-200 200-300

200-300

300-500

500-1000

1000-1500

1500-2000

2000-2500

2500-3000

3000-4000

METEOROLOGICAL FORECAST DATA

GFS

50 km, Δt 3h, +144h

Bolam

8.3 km, Δt 1h, +72h

1.25 km, Δt 1h, +45h

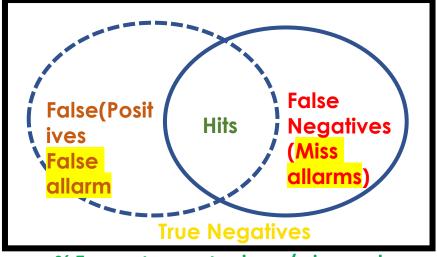
Cosmo-

2.2 km, Δt 3h, +48h

Cosmo-5M

5 km, Δt 3h, +72h

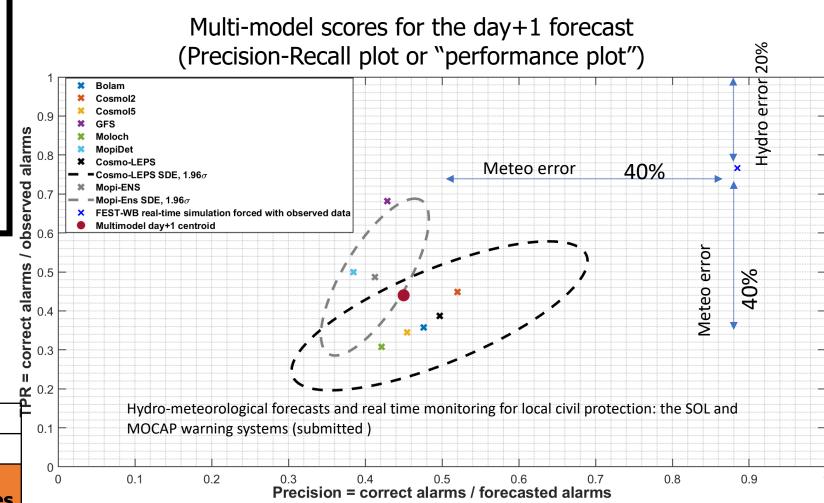
arpae_



7 km, Δ t 3h, +132h 20 ensemble

5.5 km, Δt 1h, +72h 8 ensemble

The FloWS -SOL performance (2019-2022) for events exceeding yellow discharge threshold



% Forecast correct alarm / observed alarm (True Positive Ratio)

$$TPR = \frac{Hits}{Hits + False\ Negatives}$$

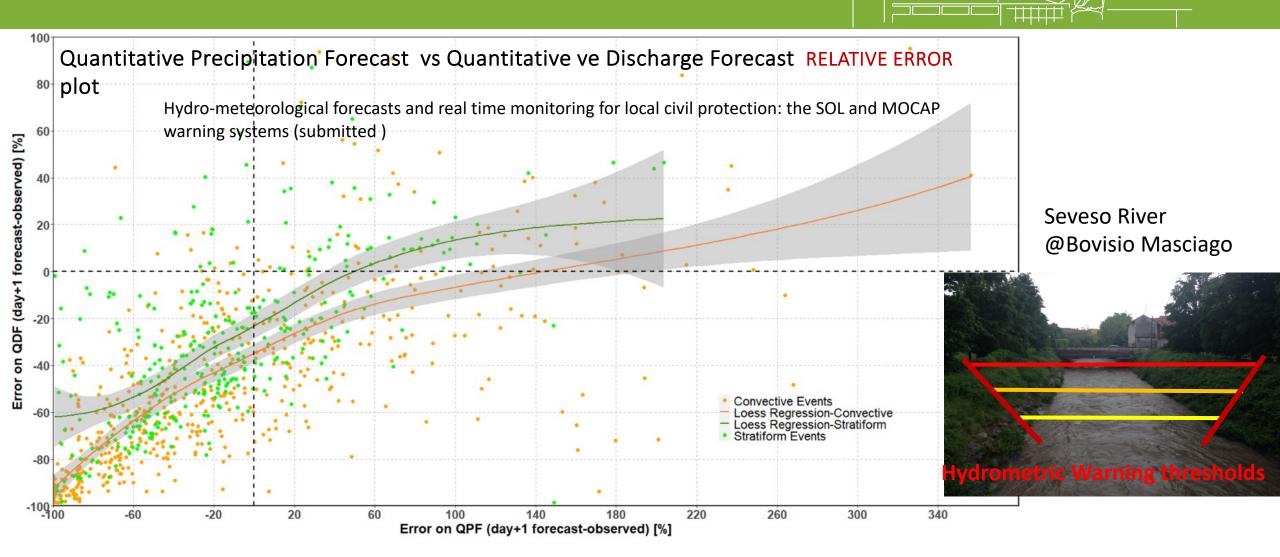
$$Precision = \frac{Hits}{Hits + False\ Positives}$$

Exceeding of discharge treshold		Observed alarm		
		Yes	No	
Predicted alarm	Yes	Hits	False Positives	
	No	False Negatives	True Negatives	

Do we prefer systems that minimize false (precision) or missed alarms (TPR)?

eding vellow discharge threshold

The FloWS -SOL performance (2019-2022) for events exceeding yellow discharge threshold in one cross section (Seveso @ Bovisio Masciago)



Observed rainfall &FEST-WB (2019-2022)

	FEST-WB		
Hits	23		
False alarms	3		
Missed alarms	7		
TPR	0.77		
PPV	0.88		

	Bolam	Cosmo-2I	Cosmo-5M	GFS	Moloch	MopiDet	Cosmo-LEPS median	Mopi-ENS median
Hits	10	13	10	15	8	15	11	15
False alarms	11	12	12	20	11	24	11	19
Missed alarms	18	16	19	7	18	15	16	14
TPR	0.36	0.45	0.34	0.68	0.31	0.50	0.39	0.52
PPV	0.48	0.52	0.45	0.43	0.42	0.38	0.48	0.40

QPF (Quantitative Precipitation Forecast) vs **QDF** (Quantitative discharge forecast) relative error evaluation for all the observed events exceeding the first warning threshold at the **day+1**, separating between **stratiform** and **convective** events.

Conclusion

Flood warning systems using Multi Model Meteo Forecast may be realized as non structural measure for flood damage reduction.

Meteo Model configurations that maximize the % of correct forecasted alarms respect to all observed allarm (TPR) have to be preffered

Structural hydraulic work design discharge may be reduced considering the cost benefit analysis supported also by early warning systems for residual risk management.

Smaller design discharge implies smaller structural works with higher social acceptance and smaller maintenance costs.

Came safely to Milan!

BOLZANO 2-4 OCTOBER 2023

Thank you for your attention

The Real Time Hydrology group website, research team lead by Prof.
Marco Mancini

The SOL System dashboard

