EUROGEO WORKSHOP 2023

ASI current and future Earth Observation Missions:

FATER ANGING

Giovanni Rum, Francesco Longo Agenzia Spaziale Italiana

BOLZANO 2-4 OCTOBER 2023

European Commission

Earth science and applications

Ensure that Earth Observation missions offers the best possible benefits for science and society. Involve EO community in all program phases

Sustain development of new instruments

Radiometers, Quantum Gravimetry, etc..

Achieve autonomy in HR systems Miniaturized HR Payload and Technology Roadmap

> **Secure the leadership in Hyperspectral payload** Hyperspectral Next Generation, Miniaturized Payload and Technology Roadmap

> > Sustain the Future of Synthetic Aperture Radar New SAR instruments and constellations (X/L/P Bands) and Technology Roadmap

> > > Consolidating the Lidar capability Lidar mission and Technology Roadmap

Strengthen developments in Thermal Infrared ASI-NASA TIR mission, Miniaturized Payload and Technology Roadmap

Pull users towards applications and services

Facilitate access to data, information and processing capabilities. Pioneer new services Stimulate downstream industrial and economic growth

PLATINO-4

Earth Observation at glance:

8 major objectives

PLATiNO-3 VHR

V²HR

PLATINO-1 M&B GEOSAR

MAIA

L-Band M&B

/ OCO-Next

Agenzia Spaziale Italiana

COSMO FUTURO

CALIGOLA

SBG -TIR

Missioni pianificate

Missioni in sviluppo

Microwave: COSMO-SkyMed and Beyond

CSG CSK Ultra-High Resolution (UHR) **Very High Resolution Governmental Use** VHR (sub-metric) Governmental Use Spot-2 VHR and Dual Pol. (**) Resolution: 1 m Sp-2A res. ≤ 0.35 x 0.55 m Single Polarization Swath ≥ 3.1 x 7.3 Km Size 10 km x 10 km Sp-2B res. ≤ 0.63 x 0.63 m Swath ≥ 10 x 10 Km **Civilian and Defence use** Sp-2C res. $\leq 0.80 \times 0.80 \text{ m}$ Swath ≥ 5 x 10 Km Civilian and Defence Use Resolution: 3 m Resolution : 3m x 3m Single Polarization Swath Size Dual Pol 40 km Swath Size 40 km Swath Size QUADPOL 15 km Civilian and Defence use **Civilian and Defence use** Resolution: 4 x 20 m Resolution: 30 m **Double Polarization** Single Polarization Swath Size : 100 km Swath Size: 100 km or or Resolution : 6 x 40 m Resolution : 100 m **Double Polarization** Single Polarization Swath Size: 200 Km Swath Size: 200 Km **Civilian and Defence use** Civilian and Defence use

SPOTLIGHT

STRIPMAP

SCANSAR

The FUTURE

- » New architectures: a system of systems
 - » GEO and LEO elements
 - » Multi-Sensor capabilities (X and L band SAR)
 - » Multi modes: mono and bi-static SAR
- » Enhanced performances
- » Systematic mapping and new on-demand services

SADCOM – in the frame of SIASGE

2 Argentinian SAOCOM satellites (1A and 1B) with an <u>L-Band SAR</u> sensor onboard. Same orbit of COSMO-SkyMed satellites.

ASI has full utilization rights on its Area of Exclusivity AoE (approximately all the Europe territory). Users:

- ✓ Scientific, institutional and commercial
- ✓ Italian and International
- ✓ <u>only for non-commercial purposes</u>

Access to data on ASI AoE:

- **1.** Registration following the instruction at: <u>https://www.asi.it/en/earth-science/saocom/</u>
- 2. Access through the ASI SAOCOM Portal http://saocom.asi.it:8081

COSMO-SkyMed – The 1st and the 2nd Generation

COSMO-SkyMed Second Generation (CSG) will:

- Ensure operational continuity to the currently operating constellation
- Achieve a step ahead in terms of functionality, performances and system services for the users

The 4 CSG Satellites will have an operational lifetime of at least 7 years. Evolutive approach already in place with FM3 & FM4

PLATINO-1 - SAR Mission-X band

Mission timeline:

- Commissioning (LEOP and Commissioning) 3 months;
- Phase-1 (@619 km, formation flying with CSK/CSG) 1 year;
- Re-orbit phase (orbit transfer) 6 months;
- Phase-2 (@410 km, monostatic acquisition) 1.5 years;
- De-orbiting phase 6 months.

PLT-1 shall be sized to provide the capacity to acquire, downlink and archive images totaling **20000 km2 daily**. Launch date: end of 2024

During Phase-1 PLT-1 will mainly work as a receiver acquiring from Earth the signal generated by CSK/CSG

Bistatic performances (Phase-1)		
Altitude	619 km	
Swath	40 km	
Stripmap Resolution	3 m	
Spotlight Resolution	1 m	
Continuous stripmap	Up to 1000 km	

Monostatic performances (Phase -2)		
Altitude	410 km	
Swath	15 km	
Stripmap Resolution	3 m	
Spotlight Resolution	1 m	
Continuous stripmap	Up to 800km	

Agenzia Spaziale Italia

THE REFLECTIVE/EMISSIVE BANDS: VIS-NIR-SWIR-TIR

Focus on:

- Multispectral imagery in the thermal IR.
 - Hyperspectral imagery in the visible and shortwave infrared;

PRISMA - Hyperspectral

Fully funded by the Italian Space Agency (ASI): in-orbit Earth Observation system that simultaneous combines data of a hyperspectral sensor and a panchromatic camera from the same scene.

- » 240 total bands in VNIR (#66, 400–1010 nm) & SWIR (#174, 920–2505 nm) at a spatial resolution of 30 m on a swath of 30 km
- » Mean spectral resolution of 10 nm in a spectral range of 400-2500 nm
- » Pan (Panchromatic) imagery is provided at a spatial resolution of 5 m
- » Simultaneous acquisition of images in the VNIR, SWIR and PAN on the same scene

PRISMA 2nd Generation

PRISMA Second Generation is the future Hyperspectral Italian Mission.

- » Entirely Funded by the Italian Space Agency
- » High-performance satellite ensuring Hyperspectral data continuity currently available from the PRISMA mission and providing enhanced performances
- » Launch date: end of 2027
 - » SWATH and SNR: on demand techniques of SWATH enlargement and SNR enhancement on a single pass using the platform agility.
 - » Revisit time (72 h with a maximum off-nadir angle of \pm 30°)
 - » Acquisition modes: **STRIPMAP** and **SPOTLIGHT**.
 - STRIPMAP image: VNIR/SWIR GSD ≤ 30 m and PAN GSD ≤5 m, swath ≥30 km and indefinite length with a Daily STRIPMAP Imaging Capacity (acquire, downlink and archive) more than 2.000.000 km2.
 - SPOTLIGHT image (on-demand): VNIR/SWIR GSD ≤10 m and PAN GSD ≤2,5 m, swath ≥30 km and length up to 210 km with a Daily SPOTLIGHT Imaging Capacity (acquire, downlink and archive) more than 200.000 km2.

PLATINO-2 MAIA (Multi-Angle Imager for Aerosols)

MAIA will explore linkages between exposure to different types of PM and human health.

Products: Daily-averaged total PM_{10} , total $PM_{2.5}$, and speciated $PM_{2.5}$ mapped in selected areas on a 1-km grid.

OC

Sulfate

Nitrate

Kicked-off a prototype project to assess population risk exposure at urban level, in the Southern Italian area, under a ASI-CNR/IIA Agreement. Planned extension to the other areas. Expected results also to support evaluation of SDG Indicator 16.2.1

EC

Dust

PLATiNO-2 - MAIA

The MAIA camera is mounted on a motorized gimbal that can rotate 60 degrees forward and backward as MAIA passes over a target on the Earth. This technique is called "step and stare."

Launch date: by the end of 2025

MAIA Mission key components

SBG-Surface Biology and Geology TIR-Multispectral Mission

SBG-VSWIR Wide-swath VSWIR Spectrometer

TIR instrum	nent	VNIR camer
Thermal IR Bands	8.28 μm / 8.63 μm / 9.07 μm / 11.33 μm	Visible Bands center
	/ 12.05 μm	NIR Bands
mid-IR bands	3.98 μm / 4.80 μm	center
		SNR
short-wave IR	1.60 μm	GSD
NETD	0.2 °K @ 300 °K	Swath width
GSD	60m	Coverage
Swath	935 km	
width	333 KIII	
Coverage	Global	1 to see all the

SBG-TIR Wide-swath TIR Imager

Launch date: end of 2027

Urban Ecosystems

NAS

Jet Propulsion Laboratory California Institute of Technology

Agenzia Spaziale Italiana

655 nm

835 nm

100

<35 m

935 km

Global

OCO-NEXT Mission

OCO-NEXT (The Next Generation Orbiting Carbon Observatory) a ASI-JPL partnership to provide a key contribution to the understanding of carbon cycle behavior in an hotter world, with increasing number of extreme events

What we expect from OCO-NEXT:

- » Extending the critical CO2 climate data record with global surface coverage and expanded capabilities compared to OCO-2 and OCO-3;
- » Global, high-precision column mixing ratios of CO2, CH4, CO, and SIF, and gridded 250 km, monthly fluxes of CO2 and CH4;
- » 150–180 km swath width with single sounding nadir footprint of 2 km × 2 km;
- » Sun-sync, 833-km LEO orbit crossing at 1330 daily, flying in formation with JPSS-1/JPSS-2, near global coverage with 16-day repeat cycle.

rvation Division - This document contains prop

Instrument Complement:

- Measure CO2, CH4, CO, and SIF emissions simultaneously:
- SIF instrument (ASI-contributed)
 - Band 1 (677-697 nm): O2 B-band/Red :
 - Band 2: (740-780 nm): O2 Aband/enhanced SIF
- GHG instrument (JPL)
 - Band 3 (1591-1660 nm): weak CO2/CH
 - Band 4 (2010-2085 nm): strong CO2
 - Band 5 (2302-2370 nm): strong CH4 ar

d in any way, in whole or in part, without the prior written consent of ASI

lex

Electro Optical EO Instruments for Small satellites

Very High Resolution Camera: Native GSD: 0,5 m PAN and 2 m MS. Swath: 8 km @400 km

Launch date: end of 2025

Compact Hyperspectral Camera, based on national heritage on PRISMA and CHIME: GSD @ 500 km: STRIPMAP = 30m, SPOTLIGHT = 20 m, PAN = 5m Swath: 20 Km

Thermal Infra-Red (TIR) Camera, an uncooled IR imager based on microbolometer detector:

> GSD @ 400 km: 40m Swath: 40Km Spectral central wavelength (pre-flight tunable): TIR1 8.6µm TIR2 9.1µm TIR3 10.3µm TIR4 11.5µm

LIDAR mission: CALIGOLA

Cloud Aerosol Lidar for Global Scale Observations of the Ocean-Land-Atmosphere System

Mission Objectives

- » Atmospheric particles and clouds microphysical and dimensional properties
- » Aerosol type determination and Aerosol-cloud interaction processes
- » Atmosphere and marine particles fluorescence measurement
- » Earth's surface elevation measurements
- » "Ocean color" products improvement & Characterization of organic matter/aerosols dissolved in the sea

Sub-System Technologies: Laser Transmitter, ultra-stable low-weight space telescopes, transmission optics,

Launch date: tentative 2030

Source: NASA/USGS, public domain

MapItaly: A service for Italian institutional users

Ultimate Objective: Provide a single access point to the SAR observations over Italy for institutional users

Atmospheric particles and clouds microphysical and dimensional properties

- » Aerosol type determination and Aerosol-cloud interaction processes
- » Since 2010, COSMO-SkyMed First (CSK) and Second Generation (CSG) are systematically mapping Italian Territory, X-band, stripmap mode, update of interferometric couples every 16 days.
- » SAOCOM data (L-band) are being added systematically since 2022.
- » Sentinel 1 data (C-band) will also be added (starting from 2014
- » Catalog and complete archive maintained online
- » API for searching and downloading data

Operational by the end of 2023

Agenzia Spaziale Italiana

THANK YOU FOR YOUR ATTENTION!