EUROGEO WORKSHOP 2023

COMPLEMENTING EO DATA WITH FINE-GRAINED IN-SITU OBSERVATIONS

STEFANIA MORRONE, KATHI SCHLEIDT, STEFAN JETSCHNY

European Commission

BACKGROUND

- Discussions with non-EO colleagues on what all could be done by combining in situ observations with the wealth of EO products, if only we:
 - could gain an easy overview of what data is available, as well as necessary storage requirements;
 - understood how to merge different grids;
 - understood the potential of Machine Learning techniques;
 - could estimate the processing resources required for data analysis;
 - could integrate existing point and vector data.

Like a child in front of a candy store, not finding a way past the glass pane ...

BREAKING THE GLASS PANE

Deliver the power of data cubes & ML to decision makers and data scientists merging spatio-temporal dimensions with thematic dimensions

Findable Accessible Interoperable Reusable

Data Cubes

from collection of existing tools and services to integrated platform

- data catalogue of pre-gridded, pre-aligned, pre-referenced EO data
- data processing catalogue (including a/p resources & ML)
- data storage & compute resources
- possibility to create own custom data cube
- meta data pipeline (data, processing steps, ...)
- community platform sharing

Italia

Horizon Europe Project - Duration: 07/2022 – 06/2025

Consortium:

3 research institutes

NILU, Norway - Wageningen University, Netherlands - Museum of Natural History, Vienna, Austria

3 SMEs in the environmental & geomatic field space4environment, Luxembourg - 4sfera, Spain - Epsilon Italia, Italy

2 technical SMEs

EOX, Austria - rasdaman, via Constructor University, Germany

UNIVERSITY

MISSION & OBJECTIVES

- Enable players from beyond classic EO domains to provide, access, process, and share gridded data and algorithms in a FAIR and TRUSTable manner.
- Create a common marketplace for data, algorithms, ML models

- Establish FAIRiCUBE Hub an integrated platform for FAIR spatial earth observation data ingestion, analysis and ML
- Demonstrate FAIRiCUBE Hub by running 5 use cases addressing EU green deal actions (climate change, circular economy, biodiversity,..)
- Collaborate with major communities working on data cubes (Euro Data Cube, EarthServer)
- Extend the usability & visibility of EO data
- Provide insights to the creation of the GDDS

USE CASES

Urban and regional focus:

- Urban adaptation to climate change
- Spatio-temporal assessment of neighborhood building stock
- Biodiversity and agriculture nexus
- Linking Climatic and Genetic Variation for Biodiversity Inference
- Validation of Phytosociological methods through Occurrence Cubes

DATA CUBES

- A data cube refers to a multi-dimensional data structure, i.e., data within a data cube is explained by specific dimensional values.
- Separation between spatio-temporal cubes (Coverages) and OLAP cubes

- Both are required by our use cases, merging spatiotemporal dimensions with thematic dimensions such as:
 - Species taxon
 - Genomic variance
 - Land cover types

OLAP Cube

Cities

Products

MULTIDIMENSIONAL SPATIO-TEMPORAL DATACUBES

New suite of ISO Coverage Standards ISO 19123 Schema for coverage geometry and functions

- ISO 19123-1:2023 Part 1: Fundamentals
- ISO 19123-2:2018 Part 2: Coverage implementation schema
- ISO 19123-3:2023 Part 3: Processing fundamentals
- Focus is on multi-dimensional gridded ("raster") coverages
 - Supports grid topologies whose axes are aligned with the axes of the CRS
 - Axes can also be referenceable, e.g. categorical lists, such as land cover or species
- rasdaman array database supports ISO 19123 specifications

OCCURRENCE CUBES

- Species dimension in addition to spatiotemporal dimensions
- Underlying spatiotemporal dimensions aligned with Copernicus sources
- Takes uncertainty into account

WAGENINGEN

JNIVERSITY & RESEARCH

GENOMICS CUBES

- Leverage data from DrosEU European Drosophila Population Genomics Consortium
 - Sequenced DNA data from 100s of Drosophila melanogaster populations
 - Better understand genetic variance related to diverse environmental factors
- In addition to spatiotemporal, axes for
 - Chromosome
 - Position
 - Nucleotide

LAND COVER ALTERNATIVE

Loss of information when converting from vector to raster

Example:

- Current grids only allow for one land cover type per cell
- Through addition of land cover dimension, percentage of land cover type per cell can be provided
- Allows further processing to access full information

211

X-DOMAIN ISSUES

- CRS: Domain and ML experts usually unaware, think in "Google Coordinates"
- Domain Axes: how to integrate domain dimensions with spatiotemporal dimensions?
- AI/ML learning approaches: what provides dependable understandable results?
 - Requirement for understandable AI when supporting scientific research!
- Resource requirements: how much data storage and processing resources are required to reach the target?

Metadata concepts:

Analysis/Processing Resources: STAC encoding emerging, but not complete

X-DOMAIN ISSUES: GRIDS

- How to align different grids, some geodetic, some projected?
- Understanding different grid approaches:
 - Value in corner (which corner?)
 - Value in centre
 - Value is cell/pixel
- Different types of data require different resampling approaches:
 - Qualitative (categorical) data
 - Nominal (NON natural ordering): classification codes, telephone number, ...
 - Ordinal (natural ordering): Hurricane scale, Richter magnitude scale, ..
 - Quantitative Data type
 - continuous data: temperature, slope, elevation, ...
 - discrete date: number of rain days, population

CONTRIBUTIONS TO GDDS

- Standardizing data models supporting ARD
 - Utilizing OGC/ISO standards
 - Including comprehensive metadata
- Dynamic access to data and processing via APIs
 - Subsetting, e.g., give me surface temperature with this resolution and CRS
 - WCPS queries and User Defined Functions (UDF), e.g., calculate vegetation index out of LC, EL, OI layers
 - Encapsulate trained models in UDF called via WCPS
- Support in resource estimation (both memory & processing), required to correctly scope a project proposal
- Knowledge base providing support on diverse aspects of gridded ARD and ML/AI processing

CONCLUSIONS

- Current geospatial datacubes overfocus on spatiotemporal dimensions (alternatively ignore / poorly support thematic dimensions)
- For well founded research, as well as unlocking potential of deap learning and AI, we require both spatiotemporal and thematic dimensions
 - ISO 19123 suite of standards enable best of breed
- Standardization of data models and analysis/processing routines enables far more efficient utilization of these resources
- Information on potential pitfalls when applying ML to geospatial datacubes hard to come by, leading to inadvertent mistakes, must be transparently available

EUROGEO WORKSHOP 2023

Many thanks for your attention!

QUESTIONS ?

s.morrone@epsilon-italia.it kathi@datacove.e

kathi@datacove.eu sjet@nilu.no

Institute of Atmospheric Pollution Research National Research Council of Italy

BOLZANO 2-4 OCTOBER 2023